<!–[CDATA[
Colégio Pedro II – U. E. Centro
1º ano – Turma 102 de 2008
Ana Pala Schwenck Nº 06
Carlos Eduardo Paiva Nº 10
Mariana Paraizo Nº 23
Patrícia Bastos Nº 30
Licença
PROFESSOR NÓS TENTAMOS COLOCAR A LICENÇA NO TRABALHO, PORÉM QUANDO ENVIÁVAMOS OCORRIA ERROS, ENTÃO NOSSO TRABALHO TEVE QUE FICAR SEM A LICENÇA, NÃO SEI O MOTIVO DOS ERROS QUEIRA DESCULPAR-NOS MAS NÃO TIVEMOS CULPA.
GRATO
Referencial Teórico
O grupo pôde perceber que existem várias leis da física no experimento em si. Ao pensar no experimento, sem visualizá-lo, dificilmente conseguiríamos imaginar uma massa de 150 gramas “puxando” uma de 196 gramas, que é obviamente mais pesada.
Aos estudarmos física na sala de aula, conhecemos forças existentes e quase imperceptíveis em nosso dia-a-dia, como a tração que existe no fio e nylon e a própria força da gravidade, que é um elemento essencial no trabalho.
Com o experimento pronto, pudemos pensar em toda a física ali existente. Pensando no corpo que ficaria suspenso no ar, pendurado pelo fio de nylon, percebe-se que ele seria puxado para baixo, por causa da força de gravidade e da sua própria massa. A força que é igual a massa de um corpo multiplicado pela força da gravidade é chamada de peso. Esse peso é a força que puxará todo o sistema para a sua direção. Esse peso recebe uma “resistência” do fio, ou seja, o fio é esticado ao máximo, criando uma nova força contrária ao peso, chamada de Tração (T). Esse fio é o “corpo” que liga os dois corpos, ou seja, Uma força que atua no corpo suspenso no ar também atuará no corpo que está sobre a mesa. Logo, a tração que existe na extremidade que segura o corpo suspenso no ar também vai existir na extremidade que puxará o corpo sobre a mesa. Sabemos também que todo corpo que estiver exercendo uma força em outro, receberá essa mesma força contra si. Logo, o corpo que estava sobre a mesa, que exercia nela a força de seu peso, recebeu de volta esse mesmo peso, em sentido contrário. Essa força que impede o corpo sobre a mesa de “entrar” nela é chamada Normal (N). Na prática, um material que se “arraste” contra outro gera uma força que “dificulta” esse movimento. Essa força é chamada e Força de Atrito (Fat). A força de atrito é o que impede que uma força relativamente pequena puxe um corpo de massa relativamente grande, como por exemplo, se não houvesse atrito, um simples inseto poderia puxar o maior dos aviões, sem esforço nenhum. Essa força de atrito é calculada pela multiplicação do coeficiente de atrito que existe entre os dois corpos (mi) e a normal do corpo que está sobre o outro, que no nosso caso, é igual ao peso do corpo. Quando a força de atrito for maior do que a força que faz um corpo se arrastar no outro, ela se iguala à outra força, para que o sistema fique parado. No nosso experimento, a força que faz com que o corpo sobre a mesa se arraste nela é a tração do fio. Se a Fat fosse maior que a tração, o sistema inteiro ficaria parado, o que não era o esperado.
Para calcular o mi, sobe-se a rampa onde será feito o experimento, na qual estará a massa que será puxada pelo fio de nylon. Em um certo momento, a massa deslizará. Nesse instante, medem-se os catetos do triangulo retângulo que se formará, onde a rampa em si era a hipotenusa. A razão entre o cateto vertical, chamado de oposto, e o horizontal, chamado adjacente, é igual ao Mi Estático. Na verdade, o mi que seria utilizado é o dinâmico. Por isso, faz-se a conversão: Mi dinâmico = 0,8 Mi estático.
Quando terminado o experimento, notamos que as forças não se anulavam, ou seja, a soma dos vetores das forças existentes era diferente de 0. Com isso, pudemos perceber que existe outra aceleração presente nesse sistema, e não somente a gravidade. De acordo com a 2ª lei de Newton, a soma dos vetores das forças existente, chamada de força resultante, seria igual a soma das massas do sistema multiplicado pela aceleração do sistema. Logo, a aceleração pode ser descoberta pela divisão da força resultante pela soma das massas.
No nosso experimento, os valores são os seguintes:
Massa do corpo sobre a superfície (corpo A) = 196g
Massa do corpo suspensos pelo fio de nylon (corpo B ) = 150g
Cateto oposto = 24 cm
Cateto adjacente = 60 cm
Tempo 1 = 0,79 segundos
Tempo 2 = 0,80 segundos
Tempo 3 = 0,66 segundos
Tempo 4 = 0,80 segundos
Tempo 5 = 0,75 segundos
Distância percorrida = 72 cm
Fizemos primeiro o cálculo da aceleração dinâmica, onde todos os materiais são ideais e os valores de massas são exatos.
Para isso, utilizamos a seguinte fórmula:
Aceleração (A) = Gravidade (G) / (Massa A + Massa B ) . ( Massa B – Mi . Massa A)
Não sabemos ainda o valor de Mi, mas, para isso, encontramos a Tangente (tg) do ângulo formado entre a rampa e a mesa.
Tg Ө = Cateto oposto / cateto adjacente = 24/60 = 0,4
Esse é o mi estático. Porém, precisamos utilizar o mi dinâmico, para isso, convertemos os valores:
Mi dinâmico = 0,8 Mi estático
Mi = 0,4 . 0,8 = 0,32
Substituindo os valores do cálculo da aceleração:
A = 9,8/( 196 + 150) . ( 150 – 196 . 0,32)
A = 9,8 / 346 . (150 – 62.72)
A = 2, 47 m/s2 = 247 cm/ s2
Seguindo isso, passamos para o cálculo da aceleração cinemática, também chamada de aceleração na “prática”.
Para isso, utilizamos a seguinte fórmula:
Aceleração cinemática = 2 . Distância (s) / tempo 2 (t 2)
Como já temos os valores de tempo e de distância, substituímos os valores:
Aceleração = 2 . 72 / 0,76 2
Aceleração = 249 cm/s2
Como essa aceleração foi encontrada na “prática”, o fio e a polia não são ideais e nem o valor da massa encontrada na balança é exato. Por isso, podemos dizer que cada um desses materiais possui uma dispersão. Essas dispersões são “tabeladas” pelo próprio medidor, como a balança e a régua.
No caso do tempo, o acionamento manual do cronômetro faz com que existam erros.
Esses erros são minimizados pela repetição do acionamento, para que exista uma precisão maior. Para isso, medimos o tempo 5 vezes. Achamos os seguintes resultados:
Tempo 1 = 0,79 segundo
Tempo 2 = 0,80 segundo
Tempo 3 = 0,66 segundo
Tempo 4 = 0,80 segundo
Tempo 5 = 0,75 segundo
Com esses valores, pudemos fazer uma média, que foi igual a 0,76 segundo.
Com essa media, podemos calcular as dispersões de cada tempo, separadamente.
Dispersão = |Tempon – Média de tempo|
Com isso, vamos achar:
Dispersão 1 = 0,03
Dispersão 2 = 0,04
Dispersão 3 = 0,10
Dispersão 4 = 0,04
Dispersão 5 = 0,01
Fazendo a média dessas dispersões, teremos a incerteza do tempo. Logo:
Tempo = 0,76 ± 0,044
Nos outros casos, nos tempos a régua, que tem uma incerteza de ± 0,1 centímetros e a balança tem uma incerteza de ± 4 gramas. Por tanto:
Distância = 72 ± 0,1 cm
Massa = 196 ± 4 g
Essa incerteza pode ser considerada como uma margem de erro, que pode ser tanto para “mais” quanto para “menos”. Para fazer contas com essas incertezas, existem os seguintes cálculos:
Para soma: d(A + B ) = dA + dB
Para subtração: d(A – B ) = dA + dB
Para multiplicação: d(A.B ) = B.dA + A.dB
Para divisão: d(A:B ) = [dA/A + dB/B ].[A/B]
Depois de fazer os cálculos, encontramos:
da = (2ds/s + 2.dt/t).(2.s/t²)
Onde:
da = Incerteza da aceleração
ds = Dispersão da distância
s = Distância
dt = Disperção de tempo
t = Tempo
Substituindo os valores, temos:
da = ( 2. 0,1/72 + 2 . 0,044/0,76) . ( 2.72/ 0,5776)
da = ± 34 cm
Logo, temos:
Aceleração cinemática = 249 ± 34 cm/s2
E temos também:
Aceleração Dinâmica = 247 cm/s2
Nosso grupo acredita que as acelerações ficaram muito próximas pois a incerteza do tempo foi muito pequena, o q acabou influenciando no resultado.
Passo-a-Passo
Para calcular a aceleração, é necessário descobrir as algumas medidas: As massas, o Mi dinâmico, o espaço percorrido e o tempo em que os corpos percorrem esse espaço.
No primeiro relatório, tínhamos deduzido duas massas para o experimento, 200g e 150g. No laboratório usamos corpos que já possuíam suas massas. Uma com a massa igual à 196g com a incerteza de 4g a mais ou a menos (incerteza da balança), a segunda possuía massa padrão equivalente à 150g.
Em seguida, precisávamos descobrir o Mi, que é calculado com a razão entre o cateto oposto e o cateto adjacente. Para isso colocamos a massa de 196 gramas sobre uma rampa e fomos subindo-a aos poucos. Quando o corpo começou a deslizar, medimos os catetos q se formaram ali, onde a rampa era a hipotenusa. Os valores foram, para o cateto adjacente, 60 cm, e para o cateto oposto, 24 cm.
Depois disso, preparamos o experimento: Colocamos as massas presas à polia, de forma que a massa equivalente á 150g ficasse pendurada e a massa de 196 ficasse sobre a rampa (esta foi posta sobre uma superfície). Com tudo pronto, fizemos o mesmo experimento 5 vezes, medindo o tempo em todas eles. Os tempo foram:
0,79 segundo
0,80 segundo
0,66 segundo
0,80 segundo
0,75 segundo
Terminados os experimentos, anotamos todos os resultados.
]]>