Análise de experimento – Dinâmica

Colégio Pedro II – Campus Centro

Matéria: Física      Professor: Sérgio Ferreira de Lima

Alunos: Caio Gentil                                  nº.: 02                   Turma: 1203

João Marcos                                              nº.: 15

Leonardo Cattari                                      nº.: 21

Leonardo Sayão                                         nº.: 22

 

Introdução

 

Neste ano de 2015 os alunos do segundo ano do ensino médio começaram a estudar cinemática e as Leis de Newton (dinâmica). No dia,foi feito um experimento no laboratório de física, a fim de que os alunos possam aprender de uma maneira diferente alguns conceitos relacionados à cinemática e às Leis de Newton (dinâmica).

desenhofisica

 

O experimento consiste em um sistema composto por dois corpos (A e B), uma roldana e um fio/corda/cabo. Como ilustra a figura o corpo B pode ficar em cima de uma mesa e preso ao corpo A pendurado pela roldana na parte de fora da mesa. A massa de A fará com que o corpo A se desloque para baixo com aceleração “a” e percorrerá a distância “h”. Do mesmo jeito, (mas horizontalmente) por causa da massa de A, o corpo B vai acelerar para a direita com a mesma aceleração “a” e vai percorrer a mesma distância “h”, mas devido à inércia do movimento de B (um corpo que está em movimento tende a continuar em movimento até que outra força atue sobre ele) ele vai continuar seu movimento da esquerda para direita com aceleração retardada (freando) “ a’ “ até que a força de atrito o pare, tendo percorrido a mais que “h” a distância “x”. Será medido o tempo “t” do deslocamento de A até o chão.

time

exper.

 

Dado o funcionamento do experimento foram estipulados como objetivos pelo professor:

  • Determinar o coeficiente de atrito cinético;
  • Comparar aceleração teórica com a experimental;
  • Analisar a propagação de erros em experimentos.

 

Para atingirmos esses objetivos vamos:

  1. Usar as Leis de Newton para deduzir (a) em função da massa de A, massa de B e g (aceleração da gravidade);P – T = Ma x aMa.g – T = Ma x a 

    T – Fat = Mb x a

    T – µ.Mb.g = Mb x a

    Somatório da Equações:

    Ma.g – µ.Mb.g = Mb x a + Ma x a

    g(Ma – µ.Mb) = a(Mb + Ma)

    a = g(Ma – µ.Mb / Mb + Ma)

  2. Usar a Equação de Torricelli para deduzir a velocidade de B quando A toca o chão; Distância hVo = 0Vf = ?

    a = g(Ma – µ.Mb / Mb + Ma)

    Então,

    Vf² = Vo² + 2.g.h.a

    Vf² = 2.g.h.(Ma – µ.Mb / Mb + Ma)

  3. Usar as Leis de Newton para deduzir (a’) em função da massa de B e do coeficiente de atrito μ;Fat = Mb.a’µ.Mb.g = Mb.a’a’ = µ.g
  4. Escrever as equações do Movimento Uniformemente Variado (MUV) para a massa B até parar, percorrendo a distância (x)função horária da velocidadeV = Vo – at0 = Vf trecho h– µ.g.t

    Função horária da posição

    ΔS = Vo.t – at²/2

    x = Vf h.t – µ.g.t²/2

  5. Isolar o “t” (tempo) da equação de velocidade e substituir na equação de posição;Função horária da velocidadeV = Vo – at0 = Vf – µ.g.t

    t = Vf h/ µ.g  (função da aceleração do trecho x com o t isolado)

  6. Substituir a velocidade final do primeiro movimento na inicial do segundo movimento;Função horária da posiçãoΔS = Vo.t – at²/2X = Vfh.t – µ.g.t²/2 → Função da posição no trecho x

    X = Vf h.Vf h/ µ.g – µ.g/2.(Vf/ µ.g)²

    X = Vf ² h/ µ.g – Vf² h/2. µ.g

    X = Vf² h/2. µ.g

  7. Reescrever a equação para que μ fique em função de massa de A (Ma), massa de B (Mb), x e h.x = 2.g.h.(Ma – µ.Mb / Mb + Ma) / 2. µ.gx = H/m.(Ma – µ.Mb / Mb + Ma)µ = h/x.(Ma – µ.Mb / Mb + Ma)

    µ = Ma.h – µ.Mb.h / Mb.x + Ma.x

    µ.Mb.x + µ.Ma.x = Ma.h – µ.Mb.h

    µ.Ma.x + µ.Mb.x + µ.Mb.h = Ma.h

    µ (Ma.x + Mb.x + Mb.h) = Ma.h

    µ = Ma.h / Ma.x +Mb.x +Mb.h

     

    µ = Ma.h / x(Ma + Mab) + Mb.h  (equação de μ em função Ma, Mb, x. e h)

  8. Deduzir a expressão da aceleração de queda em função de (h) e (t);Função horária da posiçãoΔS = Vo.t + at²/2h = at²/2

    a = 2h/t² (equação da aceleração em função de h e t)

  9. Comparar o valor de “a” cinemático com o valor de “a” teórico.

 

Dados coletados no experimento:

  • Ma = (85g ± 1g)
  • Mb = (105g ± 1g)
  • H= (0,44m ± 1m)
  • x = (0,52m ± 1m)
  • t = (0,442s ± 0,001s)

Dados já conhecidos:

  • Aceleração da gravidade – g = 9,8 m/s²

Termos que serão usados nas equações que não foram explicitados acima:

  • Fat = Força de atrito
  • T = Força de tração
  • V = velocidade

 

Cálculo do coeficiente de atrito (µ)

µ = Ma.h / x(Ma + Mab) + Mb.h

µ = 85 +- 1 . 44 +- 0.1 / ( 85 +- 1 + 105 +- 1) 52 +- 0.1 + 105 +- 1 . 44+- 0.1

µ= 3748 +- 52.5 / 14500 +- 177.5

µ= 0.2584 +- 0.0067

 

Cálculos

Acelerações de H 

Teórica:

a = g( Ma- µ . Mb)/ Ma+ Mb

a =9.8 (85-0.26 . 105)/ 105 + 85

a = 9.8 . 57.7 / 190

a = 2.9761 m/s²

Experimental:

A = 2h/t²

A = 0.88 +- 0.01/ 0.195364 +- 0.000884

A= 4.5044 +- 0.071 m/ s²

 

Comparações entre as acelerações (teórica e prática)

Encontramos grande diferença entre as duas acelerações. Esse fato acontece devido as imprecisões que acontecem no experimento como: a falta de instrumento com alta precisão para captar os valores de forma precisa; arredondamento durante os cálculos para que se ache uma resposta mais coerente; etc. Sendo assim, ao chegar no resultado final, encontra-se uma grande diferença entre os resultados.

 

 

 

 

Esta entrada foi publicada em Física. Adicione o link permanente aos seus favoritos.

Uma resposta para Análise de experimento – Dinâmica

  1. As incertezas de h e x estão erradas. Se a medida é de 0,45 m a incerteza não pode ser de 1 m! Incertezas devem ficar com 1 algarismo significativo. Não foi calculado a incerteza de uma das acelerações. E a que foi feita não está indicado como foi calculado. No mais o relatório está bom!

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Este site utiliza o Akismet para reduzir spam. Saiba como seus dados em comentários são processados.

To respond on your own website, enter the URL of your response which should contain a link to this post's permalink URL. Your response will then appear (possibly after moderation) on this page. Want to update or remove your response? Update or delete your post and re-enter your post's URL again. (Find out more about Webmentions.)